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Abstract
We show that negative differential conductance (NDC) can be observed in
metallic quantum dot structures. For a simple model at zero temperature we
have derived an analytical expression for the current–voltage characteristics and
a condition for observing NDC. For devices with gates at finite temperatures,
using the Monte Carlo method we have suggested diagrams describing a
correlation between the gate capacitance or temperature and the inter-dot
coupling in producing (or removing) NDC.

1. Introduction

Double quantum dot structures have recently attracted a great amount of attention [1–5]. In
these structures not only the charging effect, but also the inter-dot coupling and the asymmetry
between two junctions coupling dots to leads can play an important role. The current–voltage
(I–V ) characteristics are very sensitive to the device parameters and a negative differential
conductance (NDC) or even a multiple Coulomb gap may appear at low temperatures.

NDC has been suggested in a number of quantum dot structures [6–11]. It was observed
early in single semiconductor quantum dot structures and has been regarded as a result of the
existence of excited states [6]. Nakashima and Uozumi [7] have demonstrated NDC in a linear
array of metallic islands due to a competition between the forward rate of injecting charges
into the array which increases with the bias and the tunnelling rate across some junction (a
‘bottleneck’) which may be reduced with increasing bias. Shin et al [8] have calculated I–V
characteristics in a ring-shaped array of metallic dots and shown that the interaction between
electrons in two branches of the ring can bring about stationary electron configurations which
produce NDC at low temperatures (and multiple Coulomb gap at zero temperature). Heij et al
[9] have measured a device where an electron box is attached to a single electron transistor
as a gate, and reported on NDC for a range of conditions. For double dot structures the NDC
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Figure 1. (a) The current diagram of the model (for the simple case studied in section 2 the gates are
removed). (b) The schematic diagram used to illustrate how equations (9) and (10) can be derived:
the first Coulomb staircase corresponds to electron transfers around one of six triple points (solid
circles); in the condition (6) only one of these points (shown in figure) should be carried.

has been analysed by Evans et al [10] and by Wang et al [11]. The structure studied in [10] is
somewhat similar to that of [7] in the sense that electrons have to pass through both dots, while
in the structure studied in [11] the two dots are not equivalent: one dot is connected to both
external leads, but the other is connected to only one. Very recently [12], we have simulated the
I–V characteristics in the double dot device measured by Junno et al [13], taking into account
the cross-coupling between dots and gates and the finite temperature and random offset charge
effects. We have shown that an NDC of different phases, including a second or multiple
Coulomb gap, can be manipulated at low temperatures when the coupling capacitances are set
with appropriate values. It is however essentially suppressed by increasing the temperature
and/or introducing the offset charge, and is very sensitive to the device parameters.

The aims of this paper are (1) to derive an analytical expression for the I–V characteristics
and a condition for observing NDC in a simple model of metallic double dot structures
(section 2) and (2) to simulate NDC in a structure like that measured in [13] with a focus
on mutual correlations between the most characteristic parameters (section 3). The I–V
characteristics and the NDC condition have been derived by solving the master equation for
the first Coulomb staircase in some range of parameters in the simple model where all the effects
associated with the gates, the finite temperature and the offset charge are neglected. For more
realistic device models with gate couplings at finite temperatures the I–V characteristics can
be simulated and therefore the NDC behaviour can be analysed in detail using the Monte
Carlo method. The simulation data, on the one hand, supports very well the master equation
solution, and on the other hand, suggests the diagrams showing the correlations between the
gate coupling or temperature and the inter-dot coupling in producing (or removing) NDC.

2. I–V curves and the NDC condition in a simple model

In general, to study the electron dynamics in Coulomb blockade structures one often uses two
methods: the master equation and Monte Carlo simulation. The master equation is regarded
as exact, but it could not be solved exactly even in relatively simple structures, whereas Monte
Carlo simulation is relatively simple and easily realized even in complex structures. However,
as the aim of this section, we like to show an exactly analytical condition for NDC, so we have
to solve the master equation. For this end we must restrict ourselves to considering the simple
structure drawn schematically in figure 1(a) (without gates). Assuming that the temperature
is zero and neglecting the random environment (offset charge) effect, the master equation can
then be solved exactly for the first Coulomb staircase range of bias.

Within the framework of the Orthodox theory [14] the state of the system under study is
entirely determined by the number of excess electrons in two dots, n1 and n2. Supposing that
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p(n1, n2) is the probability of the state (n1, n2), the master equation reads
d

dt
p(n1, n2) = �+

l p(n1 − 1, n2) + �−
l p (n1 + 1, n2)

+ �+
m p (n1 + 1, n2 − 1) + �−

m p (n1 − 1, n2 + 1)

+ �+
r p (n1, n2 + 1) + �−

r p (n1, n2 − 1)

− [�+
l + �−

l + �+
m + �−

m + �+
r + �−

r ]p(n1, n2) (1)

where �+(−)
ν is the tunnelling rate across the junction ν (ν = l, r, m) to the right (+) or left (−)

at the state determined by the argument of the associated probability p. Equation (1) should
be solved in the condition∑

(n1,n2)

p(n1, n2) = 1. (2)

The stationary current is defined as

I = e
∑

(n1,n2)

[�+
ν (n1, n2) − �−

ν (n1, n2)]p(n1, n2), (3)

where e is the elementary charge, ν is any of the junctions l, r , or m in figure 1(a). For both
equations (1) and (3) one has to know the tunnelling rates �+(−)

ν (ν = l, r and m). At zero
temperature the tunnelling rate across a junction is defined as [14]

� =
{

0, �F � 0,
|�F | /e2 Rt, �F < 0,

(4)

where �F is the change in the free energy F of the system after the tunnelling event has
occurred, and Rt is the junction tunnelling resistance. For the simple model under study
(figure 1(a), without gates) the free energy F has the form

F = (en1 − Cl V/2)2/2C∗
l + (en2 + Cr V/2)2/2C∗

r + (en1 − Cl V/2)(en2 + Cr V/2)/C∗
m

+ eV (nl − nr )/2 − (Cl + Cr )V 2/8. (5)

Here Cl , Cm and Cr are junction capacitances as shown in figure 1(a), V is the external bias
(Vl = −V/2, Vr = V/2), nl (nr ) is the number of electrons that has entered the device from
the left (right) lead [15], C∗

l = �C/(Cr + Cm), C∗
r = �C/(Cl + Cm), and C∗

m = �C/Cm with
�C ≡ Cl Cm + CmCr + Cr Cl .

In principle, using equations (4) and (5) one can solve equation (1) and then calculate the
current (3). In practice, however, one cannot solve equation (1) exactly with all possible values
of n1 and n2, but has to accept some cut-off on the value of these numbers. To find an exact
expression for the current (3) and then an exact NDC condition we will restrict our consideration
to only the first Coulomb staircase, corresponding to the bias range Vs1 � V � Vs2, where
Vs2 = e/2Cr and Vs1 is the maximum from e/2Cl and e|Cl − Cm |/2Cr (Cl + Cm) (assuming
Cl � Cr ). In this case the states of the system are restricted to only some honeycomb cells
in the stability diagram with the possible values of n1 and n2 as illustrated in figure 1(b).
The first Coulomb staircase corresponds to electron transfers around one of six triple points
associated with the state (0, 0). Noting that at low temperature and at V � Vs1, practically,
only the tunnelling transitions along the direction of electric field (from source to drain via QDs
for electrons) are allowed, we will here concentrate our attention only on electron transfers
between states (0, 0), (1, 0) and (1,−1) around one trip point as drawn by the circle with
arrows in figure 1(b). Now, from expressions of the change in free energy �F associated to
different electron transfers (see the appendix) we learn that the problem becomes easily solved
exactly if we adopt the following conditions:

Cr � Cl � 3Cr ,

Cm � Cr (3Cr − Cl) / (Cl − Cr ) .
(6)
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In these conditions all the probabilities p(n1, n2) are equal to zero except those for three states
(0, 0), (1, 0) and (1,−1), which for short will be denoted by a, b, and c, respectively:

pa ≡ p(0, 0) = �−1
ab ��,

pb ≡ p(1, 0) = �−1
bc ��,

pc ≡ p(1,−1) = �−1
ca ��,

(7)

with �� ≡ (�−1
ab + �−1

bc + �−1
ca )−1. Here �xy is the tunnelling rate from state x to state y

(x, y = a, b, c):

�ab = (eRl)
−1[Cl(Cr + Cm)/�C ](V − e/2Cl),

�bc = (eRr )
−1[Cr (Cl + Cm)/�C](V − e(Cl − Cm)/2Cr (Cl + Cm)),

�ca = (eRm)−1[ClCr/�C ](e/2Cl + e/2Cr − V )

(8)

(�C was defined in equation (5)).
Now, the current has the simple form

I = e��. (9)

Thus, in the conditions (6) we obtain an analytical expression for the tunnelling current in the
first Coulomb staircase region, where �� is determined by the tunnelling rates between states
(0, 0), (1, 0) and (1,−1) as defined in equation (8).

Moreover, from the current expression of equation (9) we can straightforwardly derive the
condition for observing NDC:

Rm > Rl
C3

r

(Cr + Cm)(Cl − Cr )2
+ Rr

C2
r (Cl + Cm)

4ClC2
m

. (10)

The inequality (10), together with inequalities (6), gives the condition for observing NDC in
the first Coulomb staircase region in the structure under study. This condition was obtained
for the case of asymmetrical structures with Cl > Cr (6). Though in the case considered a
difference between Cl and Cr can enhance the NDC, the effect is generally governed by the
relative values of tunnelling resistances and by the capacitance Cm . It is here worthy also
to mention that the nonlinear I–V characteristics, including NDC, of mesoscopic conductors
has been critically studied by Christen and Büttiker [16], using the scattering approach. Our
present study is however concerned with the strongly correlated phenomenon of Coulomb
blockade.

In figure 2 we present some I–V curves (solid curves) calculated directly from
expression (9) in comparison with the Monte Carlo simulation data (×) at the bias voltages
corresponding to the first Coulomb staircase. Recalling that expression (9) has been obtained
in the condition (6), to calculate the current (9) the parameter values should be chosen
appropriately. For the data in this figure as well as in the others below choosing capacitance
Cr and the resistance Rr as the basic units, the current and the voltage are measured in units
of e/Rr Cr and e/Cr , respectively.

Curve 1 in figure 2 shows regular I–V characteristics without an NDC, when the
condition (10) is not satisfied. The Coulomb blockade leads to a Coulomb gap with the width of
1/3. Following the gap, the first Coulomb staircase ranges to the voltage Vs2 = 1/2Cr = 0.5.
Starting from the set of parameters corresponding to curve 1 we can get I–V curves with an
NDC by changing the parameters to fulfil the condition (10). There are different ways to achieve
this aim, some of which are shown in figure 2: by decreasing Rl (curve 2), by increasing the
inter-dot coupling Cm with regard to the condition (6) (curve 3), or by increasing the tunnelling
resistance Rm (curve 4). It is clear that, on the one hand, there really is an NDC observed in
the I–V curves in all the cases once the condition (10) is fulfilled, and on the other hand, there
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Figure 2. I–V characteristics calculated from equation (9) (solid curves) in comparison with
Monte Carlo simulation data (×) for some sets of device parameters: (1) Cl = 1.5, Rl =
1.5, Cm = 0.5, Rm = 5.0 (without NDC); (2) Cl = 1.5, Rl = 0.1, Cm = 0.5, Rm = 5.0;
(3) Cl = 1.5, Rl = 1.5, Cm = 3.0, Rm = 5.0; (4) Cl = 1.5, Rl = 1.5, Cm = 0.5, Rm = 30.0. In
the last three cases the NDC is produced by decreasing Rl (2), by increasing Cm (3) or increasing
Rm (4), then the condition (10) is satisfied.

is always a good agreement between analytical curves calculated from equation (9) and Monte
Carlo simulation points. Thus, the two results, while agreeing well with each other, show the
existence of NDC in the structure under study at least in the first Coulomb staircase at zero
temperature.

The simulation program used for the present work is the one described in detail in [12, 17].
The same program was also used to calculate the I–V characteristics and to analyse the NDC
behaviour in more realistic structures discussed in the next section.

3. The gate and temperature effects

In this section we analyse the NDC effect in a more realistic structure with two gates as drawn
in figure 1(a). Though the Monte Carlo method enables us to simulate I–V curves without any
restriction on the value of structure parameters as well as the range of bias voltage (see [12, 17]),
we will only study the influence of gates and temperature on the NDC behaviour. With the
gates included, the free energy of the system can be obtained from (5) by adding Cg1(2) to Cl(r)

and Cg1(2)Vg1(2) to (−/+)Cl(r)V/2, respectively:

F = (en1 + Cg1Vg1 − Cl V/2)2/2C (g)

l + (en2 + Cg2Vg2 + Cr V/2)2/2C (g)
r

+ (en1 + Cg1Vg1 − Cl V/2)(en2 + Cg2Vg2 + Cr V/2)/C (g)
m

+ (nl − nr )eV/2 − (Cl + Cr )V 2/8 − (Cg1V 2
g1 + Cg2V 2

g2)/2, (11)
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Figure 3. To demonstrate how an NDC can be manipulated by changing, for example, the gate
capacitance: Cg = 0.4 (curve 1), 0.8 (2), and 3.4 (3); everywhere Cl = 1, Rl = 10, Cm =
0.4, Rm = 0.5, Vg = 0.0, and T = 0.

where C (g)

l = �(g)/C2, C (g)
r = �(g)/C1 and C (g)

m = �(g)/Cm with C1 = Cl + Cg1 + Cm ,
C2 = Cr + Cg2 + Cm and �(g) = C1C2 − C2

m . The meanings of the other symbols are the same
as in expression (5).

On the other hand, simulating the problem at finite temperature, instead of (4), one has to
deal with the following tunnelling rate [14]:

� = (e2 Rt)
−1�F/(exp(�F/kBT ) − 1). (12)

Using the expressions (11) and (12) one can simulate the electron transfer across the structure
and calculate the I–V curve for different gate parameters and at various temperatures.

First, focusing attention on the gate effects we assume that the temperature is zero and two
gates are identical with Cg1 = Cg2 ≡ Cg and Vg1 = Vg2 ≡ Vg. Appearing in the energy (11)
only in the terms of induced charges CgVg, the gate voltage Vg, as is well-known, leads mainly
to an oscillation of the conductance spectroscopy (see, for example, figure 5(b) in [12]). On the
other hand, the gate capacitance and the inter-dot one are added together in all the denominators
of the first three (important) terms in the energy F (11). We can then in some approximation
guess that in affecting the form of the I–V curves (and therefore, the NDC behaviour) these
two capacitances should merely act as a single variable (Cm + Cg).

For a given value of Vg, we have simulated the I–V characteristics and searched for NDC
at different ‘points’ (Cm + Cg), keeping all other parameters fixed. Figure 3 shows I–V curves
for some values of Cg. It is clear that a change of Cg alone can bring about an NDC or bring
it down. The simulation shows that for a given value of Vg the NDC can be observed only
when Cm and/or Cg is small enough. So, by changing Cm and/or Cg gradually we were able to
fix the upper bounding points of the NDC region at which any increase of Cm and/or Cg will
at once cause the NDC to disappear. The check has been done for Vg = 0, −0.5 and −1.5.
Interestingly, for a given value of Vg, as can be seen in figure 4, all these simulation points are
within the error bars fitted well to a straight line, which divides the (Cg − Cm)-space into two
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Vg the simulation data (solid circles) are fitted to a (solid) straight line. For a given value of Vg, the
line divides the (Cg − Cm)-space into two parts; the NDC can be observed only in the lower one.
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Figure 5. To demonstrate how the temperature can remove NDC: T = 0.0002 (curve 1), 0.0102
(2), and 0.0432 (3); everywhere Cl = 1, Rl = 10, Cm = 0.4, Rm = 0.5, Cg = 0.4, and Vg = 0.0.

parts: in the upper part the NDC is absent, whereas in the lower part it can be observed. This
supports the idea mentioned above that the NDC behaviour depends on Cm and Cg mostly in
the form of a single capacitance (Cm + Cg). The error bar showing a uncertainty in defining
the boundary between two phases is very sensitive to the form of the I–V curve. The slope
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Figure 6. (T –Cm)-diagrams for two values of Vg (from top): −1.5 and 0. For each Vg the
simulation data (solid circles) are fitted with a function of the form T = (a + bCm)/(c + dCm)

(solid curve). For a given value of Vg, the NDC can be observed only in the lower space part from
the fitted line.

of the fitted (solid) straight line depends mutually on other device parameters. Note again that
for the data in figures 3 and 4 the temperature was set to zero.

The temperature, as is widely known, can remove the NDC. Figure 5 shows, for example,
how the temperature removes the NDC and simultaneously smears the Coulomb gap for the
set of device parameters mentioned in the figure caption. The phenomenon observed is very
general; however, quantitatively, the picture depends on the device parameters. For a given
set of device parameters, by changing T gradually we can fix the limiting temperature Tc

for observing NDC. Focusing our attention on the correlation between Tc and the inter-dot
coupling Cm , the obtained simulation data are shown in figure 6 for two cases, Vg = −1.5 and
0. For a given value of Vg, the simulation points divide the (T − Cm)-space into two parts in
the sense similar to figure 4: NDC can be observed only in the lower part. The fitted (solid)
curves have been judged in the following way.

From the expression of the tunnelling rate (12), the only expression that contains T , we
learn that the temperature effect should be discussed in relation to the change in free energy �F .
Considering Cm as the only variable, while all other parameters are fixed, from equation (11)
one can see that �F depends on Cm mostly in the form of (a + bCm)/(c + dCm), where a, b, c
and d are constants depending on other device parameters. This enables us to guess that the
simulation points in figure 6 could be fitted with a function of the form T = (a+bCm)/(c+dCm).
Within the range of Cm under study, as can be seen in figure 6, the fit is really nice for both
cases of different Vg. For a larger value of Cm (see the condition (6)), however, the NDC can
no longer be maintained even at zero temperature. We note again that the inter-dot coupling is
the most characteristic parameter in double dot structures. That is why it has attracted most of
our attention. Similarly, one can study the influence of other device parameters on the NDC
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behaviour. In particular, we have shown before that NDC is very sensitive to the presence of
off-set charges. It can be maintained only if the magnitude of the off-set charges is as small as
�0.15e [12].

4. Conclusion

We have studied the NDC phenomenon in metallic double dot structures. In a simple model,
limited to the first Coulomb staircase, at zero temperature we have been able to derive an
analytical expression for the I–V characteristics and a condition for NDC, which are in good
agreement with Monte Carlo simulation data. In more realistic models with gates at finite
temperature the effect is very complicated, depending on a mutual correlation between device
parameters. Our Monte Carlo simulation data show that the NDC is maintained only in devices
with gate (Cg) and inter-dot (Cm) capacitances small enough at low temperatures T and with
a small off-set charge magnitude. The correlation between the most important parameters,
Cg, T and Cm , in producing NDC can be described by simple functions which form the NDC
phase diagrams in (Cg − Cm)- and (T − Cm)-space, and therefore which are convenient for
practical purposes. Due to a potential application [9, 18] it may be necessary to analyse the
NDC with respect to the other device parameters. This can be directly done using this Monte
Carlo program. The program can also be extended easily for various quantum dot structures
within the framework of the Orthodox theory.
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Appendix

Defining �F+(−)
ν as the change in the free energy F (5) associated with an electron tunnelling

across the junction ν (ν = l, m, r ) to the right (left) at the state (n1, n2), we have

�F+
l = F(nl − 1, n1 + 1, n2, nr ) − F(nl , n1, n2, nr )

= e2(2n1 + 1)/2C∗
l + n2e2/C∗

m − eV (1 + Cl/C∗
l − Cr/C∗

m)/2,

�F−
l = e2(1 − 2n1)/2C∗

l − n2e2/C∗
m + eV (1 + Cl/C∗

l − Cr/C∗
m)/2,

�F+
m = e2(1 − 2n1)/2C∗

l + e2(n1 − n2 − 1)/C∗
m + e2(1 + 2n2)/2C∗

r

+ eV (Cl/C∗
l + Cr/C∗

r − Cl/C∗
m − Cr/C∗

m)/2,

�F−
m = e2(1 + 2n1)/2C∗

l + e2(n2 − n1 − 1)/C∗
m + e2(1 − 2n2)/2C∗

r

−eV (Cl/C∗
l + Cr/C∗

r − Cl/C∗
m − Cr/C∗

m)/2,

�F+
r = e2(1 − 2n2)/2C∗

r − n1e2/C∗
m − eV (1 − Cl/C∗

m + Cr/C∗
r )/2,

�F−
r = e2(1 + 2n2)/2C∗

r + n1e2/C∗
m + eV (1 − Cl/C∗

m + Cr/C∗
r )/2.

In the condition (6) the difference in free energy �F � 0 (i.e. corresponding electron transfer
is impossible) for all transitions from states (0, 0), (1, 0), and (1,−1) except those between
them.
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